Sir Jagadish Chandra Bose Page 3597 of Issue 30022. The London Gazette (17 April 1917). Retrieved 1 September 2010. (; "Bose". Random House Webster's Unabridged Dictionary. ; 30 November 1858 – 23 November 1937) was a polymath with interests in biology, physics and writing science fiction. He was a pioneer in the investigation of radio microwave optics, made significant contributions to botany, and was a major force behind the expansion of experimental science on the Indian subcontinent. Bose is considered the father of Bengali science fiction. A crater on the Moon was named in his honour.Bose (crater) He founded the Bose Institute, a premier research institute in India and also one of its oldest. Established in 1917, the institute was the first interdisciplinary research centre in Asia. He served as the Director of Bose Institute from its inception until his death.
Born in Mymensingh, Bengal Presidency (present-day Bangladesh), during British Raj, Bose graduated from St. Xavier's College, Calcutta (now Kolkata, West Bengal, India). Prior to his enrollment at St. Xavier's College, Calcutta, Bose attended Pabna Zilla School and Dhaka Collegiate School, where he began his educational journey. He attended the University of London to study medicine, but had to give it up due to health problems. Instead, he conducted research with Nobel Laureate, Lord Rayleigh at the University of Cambridge. Bose returned to India to join the Presidency College of the University of Calcutta as a professor of physics. There, despite racial discrimination and a lack of funding and equipment, Bose carried on his scientific research. He made progress in his research into radio waves in the microwave spectrum and was the first to use semiconductor junctions to detect radio waves.
Bose made pioneering discoveries in plant physiology. He used his own invention, the crescograph, to measure plant response to various stimuli and proved parallelism between animal and plant tissues. Bose filed for a patent for one of his inventions because of peer pressure, but he was generally critical of the patent system. To facilitate his research, he constructed automatic recorders capable of registering extremely slight movements; these instruments produced some striking results, such as quivering of injured plants, which Bose interpreted as a power of feeling in plants. His books include Response in the Living and Non-Living (1902) and The Nervous Mechanism of Plants (1926). In a 2004 BBC poll to name the Greatest Bengali of All Time, Bose placed seventh.
Bose's father sent Bose to a Bengali language school for his early education, as it was important to him that his son should study in his First language and culture before studying in English. Speaking at the Bikrampur Conference in 1915, Bose described the effect this early education had on him:
Bose joined the Hare School in Kolkata in 1869, followed by SFX Greenherald International School, also in Dhaka. In 1875, he passed the entrance examination of the University of Dhaka and was admitted to St Xavier's College, Calcutta. There, he met Jesuit Father Eugene Lafont, who played a significant role in developing his interest in natural sciences. He received a BA from the University of Dhaka in 1879.
Bose wanted to follow his father into the Indian Civil Service, but his father forbade it, saying his son should be a scholar who would "rule nobody but himself." Bose went to England to study medicine at the University of London, but had to quit because of ill health, possibly worsened by the chemicals used in the dissection rooms.
Through the recommendation of Anandamohan Bose, his brother-in-law and the first Indian Wrangler at the University of Cambridge, Bose secured admission in Christ's College, Cambridge to study . In 1884 he received a BA (Natural Sciences Tripos) from the University of Cambridge as well as a BSc from the University College London affiliated under University of London in 1883.Jagadis Chandra Bose, Sir Jagadis Chunder Bose, His Life and Speeches, The Cambridge Press, Madras ( Project Gutenberg eBook)
Among Bose's teachers at Cambridge were Lord Rayleigh, Michael Foster, James Dewar, Francis Darwin, Francis Balfour, and Sidney Vines. While at Cambridge, he met University of Edinburgh student Prafulla Chandra Roy, with whom he became close friends. In February 1887, Bose married feminist and social worker Abala Bose.
At that time, an Indian professor was paid two thirds the salary of a European and since his appointment was considered temporary, his salary was further halved, making his salary one-third that of his European peers. As a protest, Bose did not accept his salary and worked without remuneration for the first three years at Presidency College.
He was popular among the students for his teaching style and demonstration of experiments. He got rid of the roll call. After three years in this temporary post, the value of his professorial work was recognized by Tawney and Croft, who made Bose's appointment permanent with retrospective effect. Bose received his full pay for the last three years in a lump sum. However, another source states that his appointment was made permanent on 21 September 1903, some 8 years after his joining the college.
Bose used his own money to fund his research projects as well as receiving funding and support from the social activist nun Sister Nivedita.
Bose's research was not initially appreciated by his department at the college. They felt he should focus only on teaching and that research involved neglect of his duties as a teacher, in spite of Bose giving 26 hours of weekly lectures. Later, when interest was generated in the wider scientific community, the Lieutenant-Governor of Bengal proposed a research post to help Bose. But this scheme was withdrawn when Bose voted against the government's stance during a university meeting. The Lieutenant-Governor persevered to have a Rs.2500 annual grant issued. Despite this, Bose struggled to find time for research due to his teaching duties.
Bose submitted his , "On polarisation of electric rays by double-refracting crystals," to the Asiatic Society of Bengal in May 1895. He submitted , "On a new electro-polariscope," to the Royal Society of London in October 1895, and it was published by The Electrician in December 1895. This may have been the first paper to be published by an Indian in Western scientific periodicals.
Bose Jagdish Chandra, igyanprasar.gov.in The paper described Bose's plans for a coherer, a term coined by Lodge referring to radio wave Radio receiver, which he intended to "perfect" but never patented. The paper was well received by The Electrician and The Englishman, which in January 1896 (commenting on how this new type of wall and fog penetrating "invisible light" could be used in ) wrote:
In November 1895 at a public demonstration at the Town Hall of Kolkata, Bose showed how the millimetre range wavelength microwaves could travel through the human body (of Lieutenant Governor Sir William Mackenzie), and over a distance of 23 metres (75') through two intervening walls to a trigger apparatus he had set up to ring a bell and ignite gunpowder in a closed room.Savneet kaur, Great Scientists of the World : Jagdish Chandra Bose, Diamond Pocket Books Pvt Ltd - 2022, page 45Subal Kar, Physics and Astrophysics - Glimpses of the Progress, CRC Press · 2022, 1.5.4 - Fallout of Maxwell and Faraday's Electromagnetism
Wanting to meet other scientists in Europe, Bose was given a six month scientific deputation in 1896. Bose went to London on a lecture tour and met Italian inventor Guglielmo Marconi, who had been developing a radio wave wireless telegraphy system for over a year and was trying to market it to the British post service. He was also congratulated by William Thomson, 1st Baron Kelvin and received an honorary Doctor of Science ( DSc) from the University of London. In an interview, Bose expressed his disinterest in commercial telegraphy and suggested others use his research work.
In 1899, Bose announced the development of an " iron-mercury-iron coherer with telephone detector" in a presented at the Royal Society, London.
In 1900, he presented his research at the first International Congress of Physics in Paris.
Bose was the first to use a semiconductor junction to detect radio waves, and he invented various now-commonplace microwave components. In 1954, Pearson and Brattain gave priority to Bose for the use of a semi-conducting crystal as a detector of radio waves. In fact, further work at millimetre wavelengths was almost non-existent for the following 50 years. In 1897, Bose described to the Royal Institution in London his research carried out in Kolkata at millimetre wavelengths. He used waveguides, horn antennas, dielectric lenses, various polarisers and even semiconductors at frequencies as high as 60 GHz. Much of his original equipment is still in existence, especially at the Bose Institute in Kolkata. A 1.3 mm multi-beam receiver now in use on the NRAO 12 Metre Telescope, Arizona, US, incorporates concepts from his original 1897 papers.
Sir Nevill Mott, Nobel Laureate in 1977 for his own contributions to solid-state electronics, remarked that "J.C. Bose was at least 60 years ahead of his time. In fact, he had anticipated the existence of P-type and N-type semiconductors."
Bose's 1898 experiment on the optical rotation of microwaves in a twisted jute structure pioneered the study of chiral media, and preceded the fields of artificial dielectrics and metamaterials by decades and a century, respectively.
Bose documented a characteristic electrical response curve of plant cells to electrical stimulus, as well as the decrease and eventual absence of this response in plants treated with anaesthetics or poison. The response was also absent in metal treated with oxalic acid.
Impressed by Karna, Bose said:
Always in struggle for the uplift of the people, yet with so little success, such frequent failures, that to most he seemed a failure. All this too gave me a lower and lower idea of all worldly success - how small its so-called victories are! - and higher and higher idea of conflict and defeat; and of true success born of defeat. In such ways I have come to feel one with the highest spirit of my race; with every fibre thrilling with the emotion of the past. That is its noblest teaching - that the only real and spiritual advantage is to fight fair, never to take crooked ways, but keep to the straight path, whatever be in the way.
Many of his instruments are still on display and remain largely usable over 100 years later. They include various antennas, polarisers, and waveguides.
To commemorate his birth centenary in 1958, the JBNSTS scholarship programme was started in West Bengal. In the same year, India issued a postage stamp bearing his portrait. The same year Acharya Jagdish Chandra Bose, a documentary film directed by Pijush Bose, was released. It was produced by the Government of India's Films Division. Films Division also produced another documentary film, again titled Acharya Jagdish Chandra Bose, this time directed by the prominent Indian filmmaker Tapan Sinha.
On 14 September 2012, Bose's experimental work in millimetre-band radio was recognised as an IEEE Milestone in Electrical and Computer Engineering, the first such recognition of a discovery in India.
On 30 November 2016, Bose was celebrated in a Google Doodle on the 158th anniversary of his birth.
In 2018, the Bank of England decided to redesign the 50 pound note with a prominent scientist. Jagadish Chandra Bose was featured in that nomination list for his pioneering work on technology that would enable later development of Wi-Fi. However, he was not shortlisted.
Books
Other
|
|